ATL reference – language definition

(distinguish between a port, node and queue carefully)

1. Overview
Conventions

A, b, c for nodes, x, y, z for variables, I, j, k for counting/loops/array ref

Asynchronous parallel processing

Tagging data

Sending data

2. Program structure

Nodes

Ports

Queues

3. Tagging data

one items vs. variable queues vs. node queues

creation of data

literal in the code

result of operator, e.g. a + b

created by copy operator, e.g. ~a -> b

destruction of data

overwritten previous value in ‘one’ var

intermediate results within an expression, e.g. a + b * c -> d;

sent to null queue, e.g. a -> null;

when node instance is dissolved
what about aggredate data?

4. Sending data

Send one

send copy

send all

end-of-list marker, #

default queues, i.e.

x -> a -> b;

equivalent to

x -> a.in;

a.out -> y;

mailing items vs. flow-through-connecting pipe viewpoints (both relevant)

5. Chains and expressions

A ‘chain’ is a sequence of items that are sent to a node, e.g. x y z -> a;

A ‘subchain’ is a chain within another chain and is indicated by curly brackets, e.g.

x y {z m ->n} p q -> s;

The subchain is evaluated first, then the entire subchain within the curly brackets is replaced with the result from the receiving node, ‘n’ in this example.

An ‘expression’ is a set of items that is calculated to determine a single result,

e.g. (x + 2) * 4

Expressions can appear within chains.

e.g (x + 2) * 4 5 6 7 -> a;

Although it is not required, grouping expressions into sub-chains is recommended to improve clarity, e.g.

x1 – x2 y1 – y2 -> vec

{x1 – x2} {y1 – y2} -> vec

These forms have the same result but the second form is recommended to highlight that two items will be sent
Note could also use
(x1 – x2) (y1 – y2) -> vec

Which is semantically different but would have the same net result.

Neither a ‘send’ operator nor multiple separate items can appear within round brackets, e.g, both the following two expressions are illegal

(x y)

(2 -> x)

In summary, round brackets determine the order of calculation, while curly brackets determine which items will be sent to which nodes.
6. Operators

String, number, relational, logical, (sets & SQL?)

Prefix, infix & postfix

Brackets, aggregate reference (square brackets)

Defining new operators

precedence
note that because ATL has such a flexible definition of an operator symbol (e.g. +n is a value operator symbol), you will generally have to have a space each side of an operator to separate it from other items, with the exception of the language operators such as ~, ^, {, }, (,) etc, i.e.

~x+2 -> y

will not produce the expected results but

~x + 2 -> y

will

7. Sequences

Code executed in order

sending in right-to-left order

evaluate sub-chains from left subchain to right (quantify in comparison to right-to-left sending)

Guarantee of arrival order from one instance to another instance, but not from/to multiple instances. Only the order of arrival is guaranteed, not the actual time of arrival.
e.g

x -> a;

y -> a;

x will be presented to a before y is.

However

x -> a;

y -> b;

x may arrive at a before or after y arrives at b;

8. syncronisation

no wait after send (unless queue full?)

wait on retrieve on empty queue

9. Instances

Create instance with ‘new’ operator

Can send a reference to the new instance to another node.

Multiple nodes can send items to a single node input queue (e.g. workflow). Also multiple nodes can retieve from a single queue but this is not recommended, as could retrieve in any overlapping order, also limited application for this structure?

Send or retieve creates an instance, with one instance of each type for given instance of sender/retiever

When an instance is created, if a code block (not ‘port x’) named ‘init’ exists it is executed. No code within the node will be executed until the initialisation code has completed. In the case of inheritance, each init port of the parent nodes is triggered, in the order ‘process parents from left to right, repeat process within each parent, trigger ‘init’ on return from process’.
10. Scope and lifetime

Scope of names

Deletion of instances

11. Inheritance

Multiple inheritance, constructors, overlapping port names (from higher level, from different multiple parent path)

12. Triggering

Input queues – repeat while queue not empty

output queues – trigger once for get (what about multiple gets, get-all?)

linked queues, when ports are linked a queue still exists between them, so the sending node can continue to send items which are stored in the queue before the receiving port is ready to process them
trigger ‘%’, repeat ‘n’ times if ‘n’ triggers sent

13. Control flow

If, while, repeat, on

14. Simple data types

Language types vs. standard types

Number

String

Date

Time

Boolean

Bits

Link

Pointers?

15. Aggregate data types

Array

Struct

Avl tree

Hash table

Queue

stack

First, last, next, prev, append, delete

16. Scope & namespaces

All nodes at same level, no nested nodes

No global data

Variables at node and port levels.

Can have same name for port variable and node variable? (or better to prevent this) in which case the port variable will have preference

Cannot have a port and a variable with the same name (to avoid confusion)

17. Standard library

Strings

Math

Financial

Statistical

I/O – character streams, text files,binary file seeks, graphics, keyboard/hardware IO etc

18. Lexical structure
19. Syntactic structure
Misc

Table operations – append, sort, merge (left, inner, minus), SQL, (also SAS ‘first’, retain?), drop/keep columns using move-corresponding of structures?

What about ~x[1], should be copy or not-copy of individual element, not whole array?
Make sure that the one-instance-per-node paradigm doesn’t stuff up the expected results of the following code (which would expect each line to be totally separate)

^x -> ^a -> y;

^m -> ^a -> n;

Literals – strings, numbers, dates, hex

Each port within a node has its own instance of foreign nodes, otherwise random overlapping could occur.

To avoid confusion, the same name cannot be used for a variable at the port and node levels, neither can a name be used for both a variable and a port within a single node.

